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Abstract—Estimation of human pose and shape (3DHPS) in
3D is crucial to ensure the safety of vulnerable road users
(VRUs) in autonomous driving (AD) scenarios, as it can serve
as an additional feature for trajectory prediction and ego-
motion planning in complex urban environments. To tackle this
problem, we propose a novel 3DHPS model called LIF-Net, which
utilizes RGB and LiDAR data to estimate VRUs as complete
3D bodies in the world coordinate system. LIF-Net utilizes a
two-branch approach to encode both modalities separately into
a latent representation. A cross-attention-based intermediate-
fusion module learns to combine the two representations into
a joint latent feature space, which is used by a Transformer
decoder module to predict the parameters of a Skinned Multi-
Person Linear Model (SMPL). We train and evaluate LIF-Net on
the Waymo Open Dataset (WOD), containing challenging real-
world scenarios with 2D and 3D keypoint annotations.

Experimental results demonstrate the effectiveness and ro-
bustness of our approach compared to single-modality methods
in challenging real-world AD scenarios, including poor lighting,
occlusions, and varying bounding box and detection quality, while
achieving an MPJPE of 122mm and a PA-MPJPE of 76mm,
which is an improvement in MPJPE of 35.5% over image-based
methods and 9.1% over the LiDAR-based method. Code and
model will be made publicly available at lif-net.

Index Terms—3D Human Pose and Shape Estimation, LiDAR-
Camera Fusion, Autonomous Driving, SMPL

I. INTRODUCTION

Understanding human behavior in 3D is a foundational
goal of computer vision, with critical applications in fields
ranging from robotics to augmented reality. This task is
especially crucial for the safety and reliability of autonomous
vehicles (AVs), where a deep understanding of pedestrian pose
and shape is essential for accurately predicting intent and
navigating complex urban environments [1].

Despite increased research on multi-modal sensor fusion
for AD [2]–[4], the dominant paradigm for 3D Human Pose
and Shape (3DHPS) estimation has been monocular, which
regresses parameters of a statistical body model like SMPL [5]
directly from a single RGB image [6]. While these methods
have achieved impressive results, they are fundamentally con-
strained by the ill-posed nature of lifting 2D observations into
3D space. This leads to an inherent vulnerability to depth
ambiguities, where multiple 3D poses can correspond to the
same 2D projection. This problem is exacerbated in real-
world driving scenarios, which are characterized by severe
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Fig. 1: LIF-Net uses multi-modal inputs to robustly and accu-
rately estimate SMPL in both camera and LiDAR with cross-
attention feature-fusion (CAFF), even if one sensor modality
is weak (i.e., adverse lightning conditions in the image).

partial occlusions, significant variations in subject distances,
and challenging lighting conditions.

To overcome these limitations, on-board sensors like LiDAR
offer direct 3D geometric information, providing an accurate
signal for depth. However, research leveraging point clouds
for 3DHPS is less developed. While some works have demon-
strated feasibility with LiDAR-only methods [7]–[9], they are
limited by the inherent sparsity of the data. The most promis-
ing direction is therefore multi-modal fusion, yet existing
methods in this niche are also limited. The most closely related
work, the LEIR model [10], relies on concatenation-based
fusion and, crucially, was validated only in a controlled, indoor
sports environment, not in the wild. This reveals a critical gap
in the literature: a lack of robust, advanced fusion architectures
for SMPL-based mesh recovery that have been validated in the
complex, large-scale scenarios typical of autonomous driving.

In this work, we target this gap directly. We propose
a novel, transformer-based architecture for multi-modal 3D
human mesh recovery that can robustly process combined
RGB and LiDAR inputs. A key aspect of our contribution is a
method to generate accurate SMPL pseudo-ground truths for
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existing AD datasets by leveraging supervision from their 2D
and 3D joint annotations. The core of our network is a cross-
attention module that fuses extracted LiDAR features with
RGB features by dynamically weighing each modality based
on learned data to capture different situations, thus enhancing
robustness and producing accurate mesh reconstructions, as
illustrated in Figure 1 and further in Figure 3. We validate our
approach by training and performing extensive evaluations on
the large-scale Waymo Open Dataset.

In response to the challenges of single-modal estimation
and the lack of robust fusion architectures for the autonomous
driving domain, our main contributions are as follows:

• We introduce a novel intermediate-fusion architecture for
the autonomous driving domain that uses cross-attention
to address the complementary failure modes of RGB and
LiDAR for robust, state-of-the-art SMPL estimation.

• We perform extensive evaluation of a multi-modal SMPL-
based pose estimation method on the challenging, large-
scale, and multi-modal Waymo Open Dataset.

• We show significant performance improvements com-
pared to single-modality SMPL estimation approaches,
reducing the pose error (MPJPE) by up to 35.5% over
image-based and about 9% over LiDAR-based methods,
demonstrating the effectiveness and robustness of our
fusion strategy.

II. RELATED WORKS

A. Single-Modal 3D Human Mesh Recovery

Research in 3D Human Pose and Shape (3DHPS) estimation
has been dominated by monocular methods, which began
with the foundational works of the SMPL model [5] and
regression-based Human Mesh Recovery (HMR) [6]. Early
approaches relied on iterative optimization to fit the model
to 2D evidence [11], but the field has since shifted towards
end-to-end regression networks. These are often trained on
a combination of datasets, leveraging in-the-loop optimiza-
tion [12] or powerful backbones [13] to generate pseudo-
ground truth annotations. More recently, transformer-based
architectures have become state-of-the-art, using pose priors
as queries [14], learned tokens [15], or explicit camera mod-
eling [16] to achieve robust results. An emerging trend is
to further condition these models on other modalities, such
as natural language, where text prompts are used to guide
the pose estimation and resolve ambiguities, as demonstrated
by PromptHMR [17]. However, despite these advancements,
all methods that rely primarily on a single RGB image are
fundamentally constrained by the ill-posed nature of lifting 2D
observations to 3D space, making them inherently vulnerable
to depth ambiguity and occlusions.

To directly address this depth ambiguity, a smaller but
growing body of work explores 3DHPS directly from 3D
point clouds. Pioneering methods have adapted point cloud
processing architectures like PointNet++ [18] to regress SMPL
parameters from LiDAR scans, demonstrating feasibility in
both indoor [19] and outdoor settings [7], [9]. Another ap-

proach, taken by LiDAR-HMR [8], introduces a sparse-to-
dense reconstruction network to progressively refine the body
mesh from the sparse input. While these approaches success-
fully leverage direct geometric information, they are limited
by the inherent properties of the data: LiDAR point clouds
are often extremely sparse, especially for distant subjects, and
lack the rich semantic and textural cues from images that
are vital for identifying fine-grained details. The respective
limitations of each modality, i.e., depth ambiguity in RGB and
geometric sparsity in LiDAR, are complementary, creating a
strong motivation for multi-modal fusion that combines their
respective strengths.

B. Multi-Modal Fusion for 3D Perception

Given the complementary nature of RGB and LiDAR,
multi-modal fusion has become a key research direction for
robust 3D perception. A common baseline for tasks like
3D object detection is to concatenate unimodal features and
process them with an MLP [28]; however, this approach does
not explicitly model the spatial relationships between feature
sets. Consequently, state-of-the-art methods have shifted to
attention-based mechanisms that can dynamically align and
weigh features from different sensors [2], [3]. While these
advanced fusion techniques are well-established for general
perception, their application to 3D Human Pose and Shape
(3DHPS) estimation remains less developed. Prior works in
applying multimodal feature fusion to 3DHPS have pro-
gressed from regressing keypoints [29]–[31] to generating
non-parametric human meshes [32], but the task of SMPL
parameter estimation in the wild is rarely addressed. The
most closely related work that does, the LEIR model [10],
relies on concatenation-based fusion and was validated only
in controlled, indoor environments. This reveals a clear gap
for a more sophisticated, attention-based fusion architecture
validated on a challenging, in-the-wild autonomous driving
dataset.

C. Pose Estimation in the Autonomous Driving Domain

3DHPS in the autonomous driving (AD) domain presents
unique challenges compared to controlled studio datasets, e.g.,
severe occlusions, large subject distances, and ego-motion.
While prior work has addressed 3D keypoint estimation in this
context [26], full parametric mesh recovery remains a signif-
icant problem, primarily due to the scarcity of representative,
large-scale datasets. A survey of the data landscape (Table I)
reveals an evolution from these early studio datasets [20], [21]
towards more diverse in-the-wild [22], [23] and synthetic [24]
collections for pre-training [14], [15]. However, datasets with
the synchronized RGB and LiDAR data required for multi-
modal research are scarce, and those that do exist [7], [9], [10]
are typically captured in controlled, non-AD environments.

The Waymo Open Dataset (WOD) [27] is a notable excep-
tion, providing the necessary scale and diversity of complex
urban scenarios to serve as a suitable benchmark for this
task. This highlights a critical gap in the literature: a lack
of robust, SMPL-based mesh recovery methods specifically



TABLE I: Dataset overview and comparison. The column “Frames” refers to the number of frames annotated with any type
of keypoint or pose information. 2DKP, 3DKP, and SMPL refer to the dataset labeled with 2D keypoints, 3D keypoints, and
SMPL parameters respectively. Multi. Subj. refers to the scene holding multiple or only a single annotated subject. ITW and
AD refer to the dataset being in the wild (ITW), i.e., non-studio environment, or AD domain.

Dataset Data structure
Frames Modality C Modality L 2DKP 3DKP SMPL multiple subj. ITW AD

Human3.6M [20] 3.6M ✓ ✗ ✓ ✓ ✗ ✗ ✗ ✗
MPII [21] 40.5k ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✗
3DPW [22] 51k ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✗
EMDB [23] 105k ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✗
BEDLAM [24] 380k ✓ ✗ ✓ ✓ ✓ ✓ ✗ ✗

LiDARHuman2.6M† [7] 18.4k† ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗

SLOPER4D† [9] 32k† ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗

RELI11D† [10] 3.6k† ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗
FreeForm [25] 578k ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗
PedX [26] 2.5k ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓
WOD [27] 178k ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓
† Refers to publicly available portion of the dataset, not total number reported in the original publication.

designed for and validated on a large-scale, multi-modal AD
benchmark. Our work directly targets this gap, proposing a
novel fusion architecture and demonstrating its effectiveness
on this challenging domain.

III. METHOD

A. Preliminaries

a) SMPL: In this work, we utilize the SMPL model [5].
The model M is a function, M(θ,β) → V, that maps
body pose (θ ∈ R72) and shape (β ∈ R10) parameters to a
high-resolution 3D vertex mesh V ∈ R6890×3. These vertices
can then be mapped to 3D keypoints via a pre-defined joint
regressor.

b) HMR: Human mesh recovery (HMR) aims to recon-
struct a person via the SMPL pose θ and shape β parameters
by learning the predictor of f(I,P), when image I, point
cloud P , or both are provided. The function also includes π,
the camera translation, allowing the prediction of 3D meshes
solely by image and resulting in f(I,P) = (θ, β, π).

c) Coordinate systems: We define three right-handed
coordinate systems used throughout this work: (1) Fworld [27]:
a vehicle-centered frame; (2) Fcam [33]: a standard pinhole
camera frame; and (3) FSMPL [5]: a pelvis-centered body
frame. All input 3D data, such as LiDAR points and ground-
truth 3D joints, are initially provided in Fworld. Our entire
processing pipeline, including the final SMPL mesh prediction,
operates in the Fcam frame. We use the calibrated extrinsic and
intrinsic parameters provided by the dataset to transform data
from Fworld to Fcam.

B. Architecture

The overall architecture of our proposed network, illustrated
in Figure 2, comprises four main components: a pre-trained
RGB encoder, a LiDAR encoder, a feature fusion module, and
a transformer decoder head initialized with weights pre-trained
for the task of SMPL parameter regression. While the RGB
encoder and decoder head leverage pre-trained weights, the
LiDAR encoder and fusion module are trained from scratch

to output the final pose (θ) and shape (β) parameters for the
SMPL model.

RGB Encoder. To extract rich semantic features, we em-
ploy a Vision Transformer Large (ViT-H/16) backbone [34],
initialized with ViTPose [35] weights pre-trained for human
pose estimation. This choice is motivated by the strength
of vision transformers in modeling global context via self-
attention [36], [37], making them highly effective for dy-
namic outdoor scenes. The encoder processes an input RGB
crop Xrgb ∈ R3×256×256 from ground-truth bounding boxes,
tokenizes it into 256 patches, and passes them through 24
transformer blocks to produce the final feature map fimg ∈
RB×1280×16×12.

LiDAR Encoder. To encode geometric structure from
sparse point clouds, we employ a PointNet++ [18] backbone
that is trained from scratch on our target dataset. While other
methods like VoxelNet [38] operate on voxelized represen-
tations, our choice is consistent with recent pose estimation
literature [8], [10], [29] as PointNet++ directly processes raw
points, excelling at capturing fine-grained detail by hierarchi-
cally learning local and global context. Before encoding, the
point cloud for each subject is transformed into the sensor’s
coordinate frame and centered on the subject’s root. We sample
or pad this cloud to a fixed size of NP = 512 points, where
the padding operation randomly selects points, copies them,
and applies a small normally distributed noise with σ = 0.01.
The encoder processes the resulting input Xpc ∈ RNP×3 to
produce a global feature vector fLiDAR ∈ RB×1024 for the
fusion module.

Feature Fusion. To robustly integrate visual and geometric
information, we employ a cross-attention module with eight
attention heads. We choose this over MLP-based fusion [28]
or unimodal self-attention [39] to explicitly model inter-modal
interactions. The core strategy is to use the dense feature
map from the image encoder to query the global, geometric
context provided by the LiDAR features, enhancing robustness
against sensor degradation. The flattened image feature map
forms the query tensors, Qrgb. Concurrently, the global LiDAR
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Fig. 2: An overview of our multi-modal architecture for 3D human pose and shape estimation. The network fuses features
from a ViTPose image encoder and a PointNet++ LiDAR encoder via cross-attention using RGB features as queries and
LiDAR features as keys and values. A transformer regressor predicts SMPL parameters (θ, β), supervised by 2D/3D keypoint
(L2D,L3D) and parameter (LSMPL) losses. Modules marked with a fire icon are either trained or fine-tuned, while those marked
with a snowflake icon are frozen.

feature is linearly projected to match the image feature’s
channel dimension, forming the keys and values Kpc and
Vpc. Multi-head attention computes the fused representation
ffusion ∈ RB×192×1280, which is passed to the decoder head,
according to:

ffusion = softmax

(
QrgbK

T
pc√

dk

)
Vpc, (1)

where dk is the key dimensionality.
Transformer Decoder Head. To regress the final SMPL

parameters, we use a transformer decoder head which is
initialized with pre-trained HMR2 weights [14] and fine-tuned
on our multi-modal data using the fused feature map ffusion as
context. Following [14], an SMPL mean-parameter-initialized
query token attends to this context, with its output passed
through linear layers to predict a residual update for the final
body pose (θ) and shape (β).

SMPL Model. The final output of our network consists
of the SMPL pose (θ) and shape (β) parameters, which
generate a 3D human mesh. As detailed in the preliminaries
(Section III-A), we utilize the SMPL model [5], and its weights
remain frozen during training.

C. Losses

Following state-of-the-art methods [6], [14], [15], our net-
work is trained end-to-end by minimizing a total objective
function, Ltotal, which is a dynamically adapted, weighted sum
of up to three components. Our training is primarily driven
by the 3D keypoint loss, L3D, which provides direct spatial

supervision using an L1 error between the predicted (ŷ) and
ground-truth (y) 3D keypoints.

L3D = ∥ŷ − y∥1 (2)

The second key supervision signal is the 2D keypoint loss,
L2D, which anchors the 3D estimate in the image plane
by projecting the predicted 3D joints ŷ using the camera
projection function π and penalizing the L1 error against the
2D ground truth y.

L2D = ∥π(ŷ)− y∥1 (3)

To ensure plausible predictions, we regularize the output
with an L2 loss on the SMPL parameters, LSMPL (Eq. 4):

LSMPL =
∥∥∥θ̂ − θ

∥∥∥2
2
+
∥∥∥β̂ − β

∥∥∥2
2

(4)

(5)

The final objective function is a weighted sum of these
components (see Sec. IV-C for hyperparameter values):

Ltotal = λ3DL3D + λ2DL2D + λSMPLLSMPL (6)

IV. EXPERIMENTS

To validate our proposed multi-modal fusion architecture,
we conduct a series of comprehensive experiments on the
large-scale Waymo Open Dataset (WOD) [27]. We first de-
tail our experimental setup, including the dataset prepara-
tion, evaluation metrics, and implementation details. We then
present our main quantitative results, comparing our model’s
performance against state-of-the-art single-modal and multi-
modal baselines. Following this, we perform extensive ablation



studies to rigorously analyze the contribution of each key
component of our model, particularly the impact of our cross-
attention fusion mechanism. Finally, we provide qualitative
results to visually demonstrate our model’s performance and
robustness in challenging, in-the-wild autonomous driving
scenarios.

A. Dataset

Dataset Selection. Our work requires a large-scale, multi-
modal dataset situated in the autonomous driving (AD) do-
main. As shown in our dataset survey in Table I, WOD [27]
is the only publicly available dataset that simultaneously pro-
vides urban AD scenarios, multi-subject complexity, synchro-
nized LiDAR-camera data, and human keypoint annotations
in 2D and 3D. While it lacks the direct SMPL annotations
needed for our primary task, its scale and in-the-wild nature
make it the most suitable benchmark.

Dataset Statistics and Splits. The WOD dataset provides
approximately 179k pedestrian samples, which we divide
according to the official train/val split. As shown in Table II,
these samples have varying annotation availability. Our ex-
periments leverage the different subsets based on whether
they have 2D keypoints (WOD2D), 3D keypoints (WOD3D), or
both (WOD2D3D). All models are ultimately evaluated on the
WODval

2D3D split, which contains samples with complete multi-
modal annotations.

Pseudo-Ground Truth Generation. Since WOD lacks
SMPL labels, we generate pseudo-ground truths for our
training set. Instead of using traditional optimization-based
fitting, which can yield noisy and implausible poses, we
leverage a state-of-the-art regression model, TokenHMR [15].
The key advantage is that TokenHMR’s discrete latent space
acts as a powerful learned prior, ensuring all generated poses
are anatomically realistic and providing a stable supervision
signal. To further refine these labels, we replace the re-
gressed global orientation with the orientation derived from
the ground-truth 3D bounding boxes. For consistency across
all joint annotations we apply the COCO convention.

B. Evaluation Metrics

Following common practice [14]–[16], we evaluate the
performance of our method using two standard metrics for
3D human pose estimation, reported in millimeters (mm),
where lower is better. Our core 3D evaluation relies on Mean
Per Joint Position Error (MPJPE) and its Procrustes-Aligned
variant (PA-MPJPE).

MPJPE measures the mean Euclidean distance between the
N predicted 3D joints (ŷ) and ground-truth 3D joints (y) after
aligning their root (pelvis) joints. It provides a measure of
absolute pose accuracy, defined as:

MPJPE(ŷ,y) =
1

N

N∑
i=1

∥ŷi − yi∥2 . (7)

Procrustes-Aligned MPJPE (PA-MPJPE) computes the
error after finding the optimal scale factor s ∈ R, rotation
matrix R, and translation vector t ∈ R3 that best align the

TABLE II: Overview of dataset splits, listing the number of
frames and counts of 2D-only, 3D-only, and combined 2D+3D
samples with camera (C), LiDAR (L), 2D keypoints (KP),
and 3D keypoints (KP). Symbols: ✓= fully available, × =
not available, ∼ = partially available. The final ”All” category
represents the total accumulated count of all unique pedestrian
samples across the different subsets.

Split Samples C L 2D KP 3D KP

2D

WODtrain
2D 141,348 ✓ ˜ ✓ ×

WODval
2D 26,619 ✓ ˜ ✓ ×

Total 167,967 ✓ ˜ ✓ ×

3D

WODtrain
3D 3,946 ˜ ✓ × ✓

WODval
3D 1,063 ˜ ✓ × ✓

Total 5,009 ˜ ✓ × ✓

2D
3D

WODtrain
2D3D 4,655 ✓ ✓ ✓ ✓

WODval
2D3D 905 ✓ ✓ ✓ ✓

Total 5,560 ✓ ✓ ✓ ✓

A
ll

WODtrain
all 149,949 ˜ ˜ ˜ ˜

WODval
all 28,587 ˜ ˜ ˜ ˜

WODall 178,536 ˜ ˜ ˜ ˜

predicted pose with the ground truth. Therefore, PA-MPJPE
is used to navigate to the source of potential errors within
the pose itself, while MPJPE is a stricter metric better suited
to measure true pose accuracy without such alignment. The
metric is defined as:

PA-MPJPE(ŷ,y) =
1

N

N∑
i=1

∥sRŷi + t− yi∥2 . (8)

C. Training

Our model, LIF-Net, is trained on four NVIDIA H100
GPUs for 1000 epochs. We use the AdamW optimizer with
an initial learning rate of 10−4 and a weight decay of 10−4.
We keep the learning rate constant throughout the training.
We use a batch size of 64 per GPU. The training objective
combines the 3D keypoint loss (L1), 2D keypoint loss (L1),
and the SMPL parameter loss. The weights for these loss
components were determined empirically through a series
of experiments on the validation set, starting from values
common in the literature [14], [15]. The used weights are set to
λ3D = 5∗10−2, λ2D = 5∗10−3, and λSMPL = 10−2. The λSMPL
weight is further distributed internally to penalize the global
orientation (λglobal = 10−4), body pose (λpose = 10−4), and
shape parameters (λbetas = 5 ∗ 10−5). For our ablation studies,
the RGB-only baseline (LIF-NetRGB) is trained with this same
protocol. However, the LiDAR-only baseline (LIF-NetPC) can
only be trained with the LSMPL loss on the WOD2D3D split, as
this is the only subset that has both the necessary LiDAR input
and the image-derived pseudo-ground truth SMPL parameters.

D. Quantitative and Qualitative Evaluation

We present the primary quantitative results of our method,
LIF-Net, on the WOD validation split as MPJPE and pa-
MPJPE, compared to several other pose and joint estimation
methods. Table III shows the quantitative results our model
achieves on the WOD validation split as MPJPE and PA-
MPJPE, compared to several other pose estimation methods,



and improves the performance evaluated on MPJPE by 35.5%
and 9% compared to the image-only and LiDAR-only models,
respectively. The methods LiDARHMR [8], 4D-Humans [14],
and TokenHMR [15] estimate complete SMPL parameter sets
using LiDAR-only or camera-only approaches. 4D-Humans
and TokenHMR initialized with weights provided by the
authors have been fine-tuned on the used training set using
the losses introduced to train LIF. LiDAR-HMR was not
fine-tuned as we used the provided WaymoV2 checkpoint.
One can clearly see that the placement of the meshes in 3D
space benefits from our proposed fusion approach compared
to the camera-only SMPL estimation methods, evident in the
significantly reduced MPJPE metrics. LiDARHMR shows a
superior performance in PA-MPJPE, which means that it learns
the spatial relationships between joints better, but places the
mesh worse than LIF-Net in 3D space, evident in its worse
MPJPE value. Figure 3 illustrates representative qualitative
results that highlight the diversity and complexity of the
Waymo Open Dataset and demonstrate our model’s robustness
across challenging scenarios.

TABLE III: Quantitative comparison in MPJPE and PA-
MPJPE of 3DHPS methods on WODval

2D3D. The results clearly
show the impact of fusing camera and LiDAR modalities for
pose estimation in MPJPE.

Method Modality MPJPE ↓ [mm] PA-MPJPE ↓ [mm]

4D-Humans [14] C 189 96
TokenHMR [15] C 202 72
LiDARHMR [8]∗ L 134 63
LIF-Net (ours)‡ C + L 122 76

‡MPJPE vs. PA-MPJPE Trade-off: Our fusion approach excels at
absolute 3D positioning (MPJPE), which is critical for AD safety, by
leveraging LiDAR localization cues. This results in a favorable trade-off
with a minor degradation in the optimized PA-MPJPE.

E. Ablation Studies

To isolate the contribution of each component of our model,
we performed several ablation studies. These experiments
were designed to quantify the performance impact of our key
architectural choices, particularly our fusion mechanism.

First, we evaluate our model with different input settings:
image-only, LiDAR-only, and fused input, to assess the impact
of modality choice. As shown in Table IV, combining both
modalities improves performance, highlighting the benefit of
multimodal fusion. One can see that the LiDAR input has
a bigger influence on the performance of the model as we
evaluate the placement of joints in 3D space.

Second, we applied different architectures for the fusion
component of the network to evaluate the effectiveness of our
proposed cross-attention-based feature fusion. Specifically, we
compare two simple fusion strategies for combining LiDAR
and camera features: cross-attention and an MLP. Results
in Table V show that cross-attention outperforms the much
simpler MLP alternatives, indicating the benefit of explicitly
modeling inter-modal dependencies during fusion.

Third, we assess different training strategies for multi-modal
input. Specifically, we show ablation studies on our proposed
strategy using pseudo-global orientation and modeling the
input in a camera coordinate system instead of a vehicle
coordinate system. Table VI summarizes the results achieved
in these experiments. One can clearly see that applying the
pseudo-orientation derived from the detection bounding boxes
helps stabilize the pose estimations in 3D space by improving
the quality of the generated pseudo-groundtruth SMPL param-
eters. The effect of computing everything in a camera-based
coordinate system, in contrast to that, is barely visible.

Finally, we evaluate the performance versus efficiency of our
model using four different ViT backbone sizes (Table VII).
The results confirm a clear trade-off: while the lightweight
ViT-S model is 13% faster than the ViT-H model, its accuracy
is lower, with 14% and 24% increases in MPJPE and PA-
MPJPE, respectively. This provides a range of options for
balancing speed and performance depending on the application
requirements.

TABLE IV: Ablation I: Training on different input modalities,
evaluated on WODval

2D3D.

Input Modality MPJPE ↓ [mm] PA-MPJPE ↓ [mm]

Image only 180 152
LiDAR only 128 75
LiDAR + Image 122 76

TABLE V: Ablation II: Comparison of fusion strategies for
multi-modal input, evaluated on WODval

2D3D.

Fusion Strategy MPJPE ↓ [mm] PA-MPJPE ↓ [mm]

Cross-Attention 122 76
MLP 152 89

TABLE VI: Ablation III: Comparison of training strategies
for multi-modal input, evaluated on WODval

2D3D. We investigate
the effects of pseudo global orientation and projecting into a
camera coordinate system.

Orient Cam MPJPE ↓ [mm] PA-MPJPE ↓ [mm]

- - 130 75
✓ ✓ 128 76
✓ - 122 76
- ✓ 128 75

V. CONCLUSION

This paper represents a novel LiDAR and image fusion
architecture for 3D human mesh recovery by utilizing cross-
attention feature-fusion. With this proposed method, we ad-
dress the significant challenge of 3D human mesh recovery
in autonomous driving scenarios, where unimodal approaches
are fundamentally limited. Our extensive experiments on the
Waymo Open Dataset demonstrate that fusing both LiDAR
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Fig. 3: We show multiple qualitative samples, highlighting both the diversity and complexity of WOD, and demonstrate our
model’s robustness to common failure modes in autonomous driving detections. The figure is structured as follows. Row one
and two: Input of image and LiDAR modality. Row three and four: LIF-Net outputs overlaying the image and LiDAR inputs.
Row five and six: TokenHMR and LiDAR-HMR outputs overlaying their respective input. The samples hold the following
cases. Sample a, b. Occlusion, multi-subject. Bottom-up 3D joint estimators often fail to predict occluded parts, such as hidden
heads or limbs overlapping with nearby pedestrians. A top-down SMPL approach mitigates this by leveraging body priors
to reconstruct missing or occluded regions consistently. Sample c, d. Large objects, annotation mismatch. Despite low visual
contrast between a black umbrella and clothing, all models can estimate the pose correctly. In contrast, inconsistent 2D/3D
bounding boxes in the other sample cause fusion errors due to mismatched pedestrian regions, while single modality models
perform well. Sample e, f. Poor Lightning. Image model accuracy drops significantly under adverse lighting, while fusion and
LiDAR models remain robust. Sample g, h. Point cloud noise. Contaminated point clouds impair LiDAR estimation, but fusion
and image models consistently maintain pose accuracy. Samples e, f, g, h highlight the robustness of our LIF-Net.

and RGB modalities consistently improves performance and
robustness, leading to state-of-the-art results in these chal-
lenging real-world conditions. Specifically, our model achieves
an improvement of approximately 35.5% over image-based
methods and 9.1% over the LiDAR-based method in terms of
MPJPE.

While our model shows strong performance, we acknowl-
edge two key limitations: its reliance on the alignment be-
tween multi-modal ground-truth bounding boxes for subject
localization, and its validation on a single, albeit large-scale,

dataset. Future work will therefore focus on integrating a
dedicated pedestrian detection module and on validating our
approach across other multi-modal datasets to further assess
its generalization capabilities.
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